Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(1): 45-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177689

RESUMEN

The conversion of natural habitats to farmland is a major cause of biodiversity loss and poses the greatest extinction risk to birds worldwide. Tropical raptors are of particular concern, being relatively slow-breeding apex predators and scavengers, whose disappearance can trigger extensive cascading effects. Many of Africa's raptors are at considerable risk from habitat conversion, prey-base depletion and persecution, driven principally by human population expansion. Here we describe multiregional trends among 42 African raptor species, 88% of which have declined over a ca. 20-40-yr period, with 69% exceeding the International Union for Conservation of Nature criteria classifying species at risk of extinction. Large raptors had experienced significantly steeper declines than smaller species, and this disparity was more pronounced on unprotected land. Declines were greater in West Africa than elsewhere, and more than twice as severe outside of protected areas (PAs) than within. Worryingly, species suffering the steepest declines had become significantly more dependent on PAs, demonstrating the importance of expanding conservation areas to cover 30% of land by 2030-a key target agreed at the UN Convention on Biological Diversity COP15. Our findings also highlight the significance of a recent African-led proposal to strengthen PA management-initiatives considered fundamental to safeguarding global biodiversity, ecosystem functioning and climate resilience.


Asunto(s)
Ecosistema , Rapaces , Animales , Humanos , Pradera , Conservación de los Recursos Naturales , Biodiversidad
2.
Ambio ; 51(7): 1632-1642, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35079963

RESUMEN

Illegal wildlife crime is a global phenomenon, accelerating the ongoing biodiversity crisis. In the Old World, and particularly in Africa, illegal use of poisons to eliminate carnivores is the main driver of the continental vulture crisis. Knowledge about the underlying source and drivers of this threat is lacking for most areas, including Kenya, a global vulture and biodiversity hotspot. An extensive questionnaire survey of over 1300 respondents was run, using a specialized questioning technique and quantitative analytical approaches. Results show that, while pastoralists have a positive attitude towards vultures, over 20% of them use poisons to eliminate predators. Poisoning was largely driven by livestock losses to predators, and by negative attitude towards predators. Poisoning was less prevalent among respondents aware of the Kenya Wildlife Act. Overall, we suggest that a combination of top-down, e.g. legislation, and bottom-up (such as corrals or compensation) along with awareness campaigns may help reduce poisoning on the ground.


Asunto(s)
Falconiformes , Venenos , Animales , Animales Salvajes , Concienciación , Crimen , Kenia
3.
Mov Ecol ; 8: 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32082577

RESUMEN

BACKGROUND: Despite our understanding of the principal factors that shape bird migration strategies, there is conflicting evidence regarding the role of habitat in shaping migration routes and schedules, including day and night activity and differences between autumn and spring. For fly-and-forage migrants, we predict that habitat characteristics might guide migration speed, route selection and migrating schedules. METHODS: We use solar-powered GPS transmitters, obtaining high accuracy data, to monitor the migratory movements of Eleonora's falcon breeding in Cyprus, which is the easternmost breeding population of the species. We tested for potential preferences in habitat characteristics along the migration routes, separately for the northern, drier part and the more vegetated southern part of the trips. We also examined the relationship between migration speed and vegetative cover during day and at night, accounting for wind support. RESULTS: We found that tagged individuals repeatedly exhibited an anticlockwise loop migration pattern with spring routes being more easterly than autumn ones. We identified a preference for migration through vegetation-rich areas, where during daytime tagged individuals travel at slower migration speeds compared to vegetation-poor areas, indicating fly-and-forage activity. Birds roosted during most nights, combining refueling stopovers at selected vegetation-rich areas before or after crossing ecological barriers. Conversely, both during day and night, tagged individuals overflew unsuitable habitats more quickly. CONCLUSIONS: Our results suggest that habitat is an important factor in Eleonora's falcon migratory strategies. Active selection of vegetation rich areas in combination with reduced migration speeds there, allows the migrating falcons to combine migration during the day with fly-and-forage refueling, while roosting most nights.

4.
Sci Rep ; 7(1): 8798, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821735

RESUMEN

Conservation of migratory species faces the challenge of understanding the ecological requirements of individuals living in two geographically separated regions. In some cases, the entire population of widely distributed species congregates at relatively small wintering areas and hence, these areas become a priority for the species' conservation. Satellite telemetry allows fine tracking of animal movements and distribution in those less known, often remote areas. Through integrating satellite and GPS data from five separated populations comprising most of the breeding range, we created a wide habitat suitability model for the Eleonora's falcon on its wintering grounds in Madagascar. On this basis, we further investigated, for the first time, the impact of climate change on the future suitability of the species' wintering areas. Eleonora's falcons are mainly distributed in the north and along the east of Madagascar, exhibiting strong site fidelity over years. The current species' distribution pattern is associated with climatic factors, which are likely related to food availability. The extent of suitable areas for Eleonora's falcon is expected to increase in the future. The integration of habitat use information and climatic projections may provide insights on the consequences of global environmental changes for the long-term persistence of migratory species populations.


Asunto(s)
Migración Animal , Rapaces , Estaciones del Año , Animales , Ecosistema , Geografía , Madagascar
5.
Ecol Evol ; 6(4): 1092-103, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26941945

RESUMEN

The White-headed Vulture Trigonoceps occipitalis (WhV) is uncommon and largely restricted to protected areas across its range in sub-Saharan Africa. We used the World Database on Protected Areas to identify protected areas (PAs) likely to contain White-headed Vultures. Vulture occurrence on road transects in Southern, East, and West Africa was adjusted to nests per km(2) using data from areas with known numbers of nests and corresponding road transect data. Nest density was used to calculate the number of WhV nests within identified PAs and from there extrapolated to estimate the global population. Across a fragmented range, 400 PAs are estimated to contain 1893 WhV nests. Eastern Africa is estimated to contain 721 nests, Central Africa 548 nests, Southern Africa 468 nests, and West Africa 156 nests. Including immature and nonbreeding birds, and accounting for data deficient PAs, the estimated global population is 5475 - 5493 birds. The identified distribution highlights are alarming: over 78% (n = 313) of identified PAs contain fewer than five nests. A further 17% (n = 68) of PAs contain 5 - 20 nests and 4% (n = 14) of identified PAs are estimated to contain >20 nests. Just 1% (n = 5) of PAs are estimated to contain >40 nests; none is located in West Africa. Whilst ranging behavior of WhVs is currently unknown, 35% of PAs large enough to hold >20 nests are isolated by more than 100 km from other PAs. Spatially discrete and unpredictable mortality events such as poisoning pose major threats to small localized vulture populations and will accelerate ongoing local extinctions. Apart from reducing the threat of poisoning events, conservation actions promoting linkages between protected areas should be pursued. Identifying potential areas for assisted re-establishment via translocation offers the potential to expand the range of this species and alleviate risk.

6.
PLoS One ; 9(1): e83470, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24421887

RESUMEN

The ongoing global decline in vulture populations raises major conservation concerns, but little is known about the factors that mediate scavenger habitat use, in particular the importance of abundance of live prey versus prey mortality. We test this using data from the Serengeti-Mara ecosystem in East Africa. The two hypotheses that prey abundance or prey mortality are the main drivers of vulture habitat use provide alternative predictions. If vultures select areas based only on prey abundance, we expect tracked vultures to remain close to herds of migratory wildebeest regardless of season. However, if vultures select areas where mortality rates are greatest then we expect vultures to select the driest regions, where animals are more likely to die of starvation, and to be attracted to migratory wildebeest only during the dry season when wildebeest mortality is greatest. We used data from GSM-GPS transmitters to assess the relationship between three vulture species and migratory wildebeest in the Mara-Serengeti ecosystem. Results indicate that vultures preferentially cluster around migratory herds only during the dry season, when herds experience their highest mortality. Additionally during the wet season, Ruppell's and Lappet-faced vultures select relatively dry areas, based on Normalized Difference Vegetation Index, whereas White-backed vultures preferred wetter areas during the wet season. Differences in habitat use among species may mediate coexistence in this scavenger guild. In general, our results suggest that prey abundance is not the primary driver of avian scavenger habitat use. The apparent reliance of vultures on non-migratory ungulates during the wet season has important conservation implications for vultures in light of on-going declines in non-migratory ungulate species and use of poisons in unprotected areas.


Asunto(s)
Migración Animal/fisiología , Artiodáctilos/fisiología , Ecosistema , Falconiformes/fisiología , Conducta Predatoria/fisiología , Animales , Kenia , Modelos Lineales , Tamaño de la Muestra , Estaciones del Año , Especificidad de la Especie , Árboles
7.
Ann N Y Acad Sci ; 1249: 57-71, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22175274

RESUMEN

Vultures are nature's most successful scavengers, and they provide an array of ecological, economic, and cultural services. As the only known obligate scavengers, vultures are uniquely adapted to a scavenging lifestyle. Vultures' unique adaptations include soaring flight, keen eyesight, and extremely low pH levels in their stomachs. Presently, 14 of 23 (61%) vulture species worldwide are threatened with extinction, and the most rapid declines have occurred in the vulture-rich regions of Asia and Africa. The reasons for the population declines are varied, but poisoning or human persecution, or both, feature in the list of nearly every declining species. Deliberate poisoning of carnivores is likely the most widespread cause of vulture poisoning. In Asia, Gyps vultures have declined by >95% due to poisoning by the veterinary drug diclofenac, which was banned by regional governments in 2006. Human persecution of vultures has occurred for centuries, and shooting and deliberate poisoning are the most widely practiced activities. Ecological consequences of vulture declines include changes in community composition of scavengers at carcasses and an increased potential for disease transmission between mammalian scavengers at carcasses. There have been cultural and economic costs of vulture declines as well, particularly in Asia. In the wake of catastrophic vulture declines in Asia, regional governments, the international scientific and donor communities, and the media have given the crisis substantial attention. Even though the Asian vulture crisis focused attention on the plight of vultures worldwide, the situation for African vultures has received relatively little attention especially given the similar levels of population decline. While the Asian crisis has been largely linked to poisoning by diclofenac, vulture population declines in Africa have numerous causes, which have made conserving existing populations more difficult. And in Africa there has been little government support to conserve vultures despite mounting evidence of the major threats. In other regions with successful vulture conservation programs, a common theme is a huge investment of financial resources and highly skilled personnel, as well as political will and community support.


Asunto(s)
Falconiformes , África , Animales , Asia , Enfermedades de las Aves , Conservación de los Recursos Naturales , Ecosistema , Falconiformes/clasificación , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Intoxicación/veterinaria , Dinámica Poblacional/historia
8.
BMC Evol Biol ; 8: 197, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-18611281

RESUMEN

BACKGROUND: The island of Madagascar and surrounding volcanic and coralline islands are considered to form a biodiversity hotspot with large numbers of unique taxa. The origin of this endemic fauna can be explained by two different factors: vicariance or over-water-dispersal. Deciphering which factor explains the current distributional pattern of a given taxonomic group requires robust phylogenies as well as estimates of divergence times. The lineage of Indian Ocean scops-owls (Otus: Strigidae) includes six or seven species that are endemic to Madagascar and portions of the Comoros and Seychelles archipelagos; little is known about the species limits, biogeographic affinities and relationships to each other. In the present study, using DNA sequence data gathered from six loci, we examine the biogeographic history of the Indian Ocean scops-owls. We also compare the pattern and timing of colonization of the Indian Ocean islands by scops-owls with divergence times already proposed for other bird taxa. RESULTS: Our analyses revealed that Indian Ocean islands scops-owls do not form a monophyletic assemblage: the Seychelles Otus insularis is genetically closer to the South-East Asian endemic O. sunia than to species from the Comoros and Madagascar. The Pemba Scops-owls O. pembaensis, often considered closely related to, if not conspecific with O. rutilus of Madagascar, is instead closely related to the African mainland O. senegalensis. Relationships among the Indian Ocean taxa from the Comoros and Madagascar are unresolved, despite the analysis of over 4000 bp, suggesting a diversification burst after the initial colonization event. We also highlight one case of putative back-colonization to the Asian mainland from an island ancestor (O. sunia). Our divergence date estimates, using a Bayesian relaxed clock method, suggest that all these events occurred during the last 3.6 myr; albeit colonization of the Indian Ocean islands were not synchronous, O. pembaensis diverged from O. senegalensis about 1.7 mya while species from Madagascar and the Comoro diverged from their continental sister-group about 3.6 mya. We highlight that our estimates coincide with estimates of diversification from other bird lineages. CONCLUSION: Our analyses revealed the occurrence of multiple synchronous colonization events of the Indian Ocean islands by scops-owls, at a time when faunistic exchanges involving Madagascar was common as a result of lowered sea-level that would have allowed the formation of stepping-stone islands. Patterns of diversification that emerged from the scops-owls data are: 1) a star-like pattern concerning the order of colonization of the Indian Ocean islands and 2) the high genetic distinctiveness among all Indian Ocean taxa, reinforcing their recognition as distinct species.


Asunto(s)
Filogenia , Estrigiformes/fisiología , Animales , ADN Intergénico/genética , ADN Mitocondrial/genética , Geografía , Océano Índico , Madagascar , Datos de Secuencia Molecular , Dinámica Poblacional , Análisis de Secuencia de ADN , Estrigiformes/genética , Factores de Tiempo
9.
J Clin Microbiol ; 42(12): 5909-12, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15583338

RESUMEN

An intracellular organism was isolated from the tissues of an Oriental white-backed vulture (Gyps bengalensis) in chicken embryo fibroblast cell cultures. Biochemical and physical properties, ultrastructural features, and 16S ribosomal DNA sequencing classified this organism as a new taxon of mycoplasma, for which the name "Mycoplasma vulturii" is proposed.


Asunto(s)
Enfermedades de las Aves/microbiología , Falconiformes/microbiología , Infecciones por Mycoplasma/veterinaria , Mycoplasma/clasificación , Animales , Células Cultivadas , Embrión de Pollo , ADN Ribosómico/análisis , Fibroblastos/microbiología , Datos de Secuencia Molecular , Mycoplasma/genética , Mycoplasma/aislamiento & purificación , Mycoplasma/ultraestructura , Infecciones por Mycoplasma/microbiología , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Nature ; 427(6975): 630-3, 2004 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-14745453

RESUMEN

The Oriental white-backed vulture (OWBV; Gyps bengalensis) was once one of the most common raptors in the Indian subcontinent. A population decline of >95%, starting in the 1990s, was first noted at Keoladeo National Park, India. Since then, catastrophic declines, also involving Gyps indicus and Gyps tenuirostris, have continued to be reported across the subcontinent. Consequently these vultures are now listed as critically endangered by BirdLife International. In 2000, the Peregrine Fund initiated its Asian Vulture Crisis Project with the Ornithological Society of Pakistan, establishing study sites at 16 OWBV colonies in the Kasur, Khanewal and Muzaffargarh-Layyah Districts of Pakistan to measure mortality at over 2,400 active nest sites. Between 2000 and 2003, high annual adult and subadult mortality (5-86%) and resulting population declines (34-95%) (ref. 5 and M.G., manuscript in preparation) were associated with renal failure and visceral gout. Here, we provide results that directly correlate residues of the anti-inflammatory drug diclofenac with renal failure. Diclofenac residues and renal disease were reproduced experimentally in OWBVs by direct oral exposure and through feeding vultures diclofenac-treated livestock. We propose that residues of veterinary diclofenac are responsible for the OWBV decline.


Asunto(s)
Enfermedades de las Aves/inducido químicamente , Diclofenaco/envenenamiento , Rapaces/fisiología , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/envenenamiento , Autopsia/veterinaria , Enfermedades de las Aves/diagnóstico , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/patología , Causas de Muerte , Conservación de los Recursos Naturales , Diclofenaco/administración & dosificación , Dieta , Residuos de Medicamentos/envenenamiento , Cadena Alimentaria , Gota/inducido químicamente , Gota/complicaciones , Gota/epidemiología , Gota/veterinaria , Hígado/química , Hígado/patología , Pakistán/epidemiología , Dinámica Poblacional , Insuficiencia Renal/inducido químicamente , Insuficiencia Renal/epidemiología , Insuficiencia Renal/patología , Insuficiencia Renal/veterinaria , Ácido Úrico/análisis , Medicina Veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...